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A near infrared method based on principal component analysis (PCA) was developed for predicting
content uniformity of low dose tablets manufactured by a direct compression process. The work was
conducted in early stage formulation development. NIR spectra of one hundred and eighty tablets from
three feasibility batches were used as the pseudo-calibration set. A correlation was established between
PCA scores and a set of reference values obtained by HPLC analysis. The reference values were also used to
define a concentration range for the active pharmaceutical ingredient to facilitate content uniformity pre-
ear infrared spectroscopy
rincipal component analysis
artial least squares
ontent uniformity
ablet

diction by PCA. Analyses of unknown samples were conducted by forming a prediction set that included
the calibration and unknown samples, followed by PCA. Samples from two development batches were
predicted using the PCA model and the results were consistent with the reference HPLC values. Remark-
ably, the model was able to predict CU for tablets that were prepared using different grades of lactose
(anhydrous versus monohydrate). Additionally, during this study, the impact of spectrum pretreatments
on PCA is demonstrated. A brief discussion is given to highlight the advantages of PCA over partial least

for an
squares (PLS) regression

. Introduction

The development of low dose tablets poses a series of challenges.
n particular, content uniformity (CU) becomes a critical product
ttribute, creating challenging processing and scale up scenarios
ompared to conventional tablets. Near infrared (NIR) spectroscopy
s a widely accepted analytical tool in pharmaceutical analysis with
pplications in the study of content uniformity (Ritchie et al., 2002),
ablet hardness (Blanco and Alcala, 2006), dissolution (Freitas et al.,
005), and polymorph conversion (Blanco and Villar, 2003; Li et
l., 2005), etc. When developing NIR calibration models for analy-
is of low dose tablets, special care is needed to ensure specificity,
ccuracy, and robustness. Norris and Ritchie (2008) proposed to
emonstrate specificity by showing a good match between the
rst principal component spectrum and the spectrum of the active
harmaceutical ingredient (API). Alcala et al. (2008) reported an
pproach to improve quantitation and detection limits by reduc-
ng the upper concentration level of the partial least squares (PLS)
odels. It has been demonstrated that NIR calibration models can
e developed for formulations with as low as 0.5% (w/w) API.
iang et al. (2009) discussed robustness of NIR calibration mod-
ls. They pointed out that the strong correlations observed in the

∗ Corresponding author. Tel.: +1 215 628 5122; fax: +1 215 628 5897.
E-mail address: wli1@its.jnj.com (W. Li).
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alysis of samples generated in early stage formulation development.
© 2009 Elsevier B.V. All rights reserved.

PLS models were not solely based on the API information in some
cases.

As opposed to most NIR applications for quantitative pharma-
ceutical analysis that use PLS regression (Roggo et al., 2007), this
article explores simpler and more efficient alternatives to support
early stage formulation development. In Part I of this series, the
determination of blend uniformity and content uniformity by NIR
without calibration models was described (Li et al., 2007). A semi-
quantitative approach was developed by using the assumption that
homogeneity of powder blends and tablets can be evaluated based
on relative intensity changes of properly selected NIR signals. The
method was applied to an early stage formulation development
project and was able to distinguish between batches that had satis-
factory and unsatisfactory content uniformity and potency. In this
article, we explore the use of principal component analysis (PCA)
in early stage formulation development. A recent project required
the development of a low dose tablet formulation manufactured
by direct compression. In this case, the method in Part I could not
be used because the API signals were not strong enough to be sep-
arated from the background. For this development project, a PCA
model was developed instead. The model is very different from

PLS models due to its simplicity, which takes advantage of the PCA
algorithm to separate chemical variations of the API from those of
excipients and physical changes. Specificity and robustness of the
PCA model are demonstrated. The model was successfully applied
to monitoring CU of tablets from formulation development batches.

http://www.sciencedirect.com/science/journal/03785173
http://www.elsevier.com/locate/ijpharm
mailto:wli1@its.jnj.com
dx.doi.org/10.1016/j.ijpharm.2009.06.032
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eliable results were obtained even when two batches of tablets
ere prepared using two different grades of lactose (anhydrous

ersus monohydrate).

. Experimental

.1. Materials

The excipients used were lactose anhydrous (direct compres-
ion grade, purchased from Kerry Bio-Science, Norwich, NY, USA),
actose monohydrate (Fast Flo, purchased from Foremost, Baraboo,

I, USA), and microcrystalline cellulose (MCC, Avicel PH102, pur-
hased from FMC Biopolymer, Philadelphia, PA, USA). The API is a
roprietary compound under development by Johnson & Johnson
harmaceutical Research & Development, LLC (JJPRD).

.2. NIR instrument

A FOSS XDS near infrared rapid content analyzer (RCA) was used
or the sample analysis (FOSS NIR Systems, Laurel, MD, USA). The
IR settings were as follows:

Sampling module—MasterLab.
Detection/detector—Transmission/InGaAs.
Number of scans—32.
Resolution—0.5 nm.
Wavelength range—800–1650 nm.
Spectrum pretreatment—1st derivative (Gap-Segment; Gap
size = 5, Segment size = 15) unless otherwise specified.

The tablets were scanned directly without any preparation.

.3. PCA

PCA was conducted using the chemometrics software Unscram-
ler (Camo Process AS, Nedre Vollgate, Norway; version 9.7).
.4. Formulation

The tablet formulation consisted of 5 mg API, lactose, MCC and
ther excipients. Tablets were round concave with 7/32-inch diam-
ter for a total weight of 80 mg (6.25% API).

able 1
ormulation, sample, and processing conditions.

ampaign/batch Sub-batch Process con

easibility 1 1 CP01
2 CP02
3 CP03

easibility 2 4 CP01
5 CP02
6 CP03

easibility 3 7 CP01
8 CP02
9 CP03

evelopment 1 10 Beginning
11 Middle
12 End

evelopment 2 13 Beginning
14 Middle
15 End

PLC ref. 16
alidation

P, compression force.
a 10 from each feasibility batch.
b 10 from each development batch.
armaceutics 380 (2009) 49–54

2.4.1. Formulation feasibility batches
Blends were prepared by passing the API and a premixing excip-

ient (lactose or MCC) through a mill and then blended in a bin
blender with the remaining excipients. Tablets were compressed
using a SMI Piccola 10-station press (SMI Incorporated, Lebanon,
NJ, USA) at 50 rpm with three compression forces (140, 160, and
180 MPa).

2.4.2. Process development batches
Blends were prepared by passing the API and lactose (anhy-

drous or monohydrate) through a mill and then blended in a bin
blender. Tablets were compressed using a Manesty Betapress (OYS-
TAR Manesley, Merseyside, England) at 160 MPa. Samples were
retrieved at the beginning, middle and end of tablet compression.

2.5. Tablet content uniformity test by HPLC

Sample solutions were prepared at a concentration of 50 �g/mL
in a 1:1 acetonitrile/water (v/v) sample solvent. An Agilent (Wilm-
ington, DE, USA) 1100 HPLC system equipped with a photodiode
array detector was used for sample analysis. Reversed-phase chro-
matography was carried out on an Ascentis Express C18 column,
150 mm × 4.6 mm, 2.7 �m particles (Supelco, Bellefonte, PA, USA),
with an isocratic mobile phase consisting of 0.05% trifluoroacetic
acid in water/acetonitrile (53:47, v/v). The flow rate was set
at 1.0 mL/min, and the column temperature was maintained at
35 ◦C. The injection volume was 20 �L. Waters (Milford, MA, USA)
Empower 2 software was used for data acquisition and processing.

3. Results and discussion

The content uniformity evaluations were performed on two
manufacturing campaigns of a direct compression formulation. In
the first campaign, the feasibility studies compared two premixing
excipients, lactose and MCC. In the second campaign, the pro-
cess development studies compared anhydrous and monohydrate

lactose for effectiveness in improving content uniformity. Table 1
shows the detailed campaign, batch and sub-batch information for
easy identification of the samples. The focus of this article is to
demonstrate the feasibility of using PCA for evaluation of content
uniformity of low dose tablets.

d. Premixing excipient No. of tablets

Lactose anhydrous 20
20
20

Lactose anhydrous 20
20
20

MCC 20
20
20

Lactose anhydrous 20
20
20

Lactose monohydrate 20
20
20

30a

20b
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Table 2
PCA results for feasibility and development batches.

Sample Tablet (n) PC01 PC02 PC03 PC04 PC05

ID X% ID X% ID X% ID X% ID X%

Feasibility 1 60 Hd 86 Unk 13 API 1
Feasibility 1 + 2 120 Hd 85 Unk 14 API 1
F 1
F 2

H
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in the 1300–1400 nm range, which may mask the API absorption
in this region. The absorption band(s) of lactose and MCC in the
1100–1200 nm range is strong but slightly shifted from each other
and from that of the API, which may cause the shape of the API
band to be significantly changed (Fig. 2b). The most important evi-
easibility 1 + 2 + 3 180 Hd 85 Unk
easibility + development 300 Hd 65 Unk

d, hardness; Unk, unknown; X, variance % expressed.

.1. Principal component analysis of the feasibility batches

One hundred and eighty tablets were randomly selected from
he three feasibility batches according to the sampling plan in
able 1 and scanned by NIR in transmission mode. Advantages and
isadvantages of transmission versus reflectance NIR have been
iscussed in the literature (Merckle and Kovar, 1998). After pre-
reatment, principal component analyses were performed on three
ets of spectra obtained from 60 (feasibility batch 1), 120 (feasibil-
ty batches 1 and 2) and 180 (feasibility batches 1, 2 and 3) tablets.
he PCA results are summarized in Table 2. In all cases, three prin-
ipal components (PCs) were used to account for the chemical and
hysical variations within each sample set. Even though a differ-
nt number of tablets was used in each data set, the same number
f PCs was identified (3 PCs), and the percent variance expressed
PVE) by each PC was very similar. Examination of the X-loading
lots indicated that the first PC (PC01) was related to hardness vari-
tions (details not discussed here). Similar observations have been
eported in the literature (Alcala et al., 2009). The chemical or phys-
cal meaning of the second PC (PC02) remains unknown whereas
he third PC (PC03) was identified as the one related to API content
ariations in tablets. Efforts were made to explore the possibility
f increasing PVE by PC03 using different pretreatment algorithms.
aw spectra of the 180 tablet set were first pretreated with stan-
ard normal variate (SNV), multiplicative scatter correction (MSC),
r extended multiplicative scatter correction (EMSC), followed by
he 1st derivative calculation and PCA (Table 3). Interestingly, the
dded pretreatment step caused a decrease in PVE by PC03 from 2%
o 1% in all cases. A re-distribution of PVE between PC01 and PC02
as also observed. In addition, the X-loading plots of PC01 and PC02
ere significantly altered because of the added pretreatment step
hereas those of PC03 were not (Fig. 1). The fact that X-loading

lots of PC03 were consistently present supported the notion that
here may be a relationship between PC03 and API concentration
ariations.

The relationship between the third PC and the API content
as further established based on two observations. First, there

s certain resemblance between the third X-loading plot and 1st

erivative spectrum of the pure drug substance (Fig. 2a). Good spec-
ral matches are observed at 867, 885, 980, and 1100 nm. On the
ther hand, the spectral match in the 1140–1400 nm range is not
bvious. The presence of overwhelming amounts of lactose and
CC may have caused the lack of good match in this region. Both

able 3
CA results for the calibration set after different spectral pretreatments.

retreatment PC01 PC02 PC03

ID X% ID X% ID X%

st derivative Hd 85 Unk 13 API 2
NV–1st derivative Hd 94 Unk 5 API 1
SC–1st derivative Hd 95 Unk 4 API 1

MSC–1st derivative Hd 96 Unk 3 API 1

d, hardness; Unk, unknown; X, variance % expressed; SNV, standard normal variate;
SC, multiplicative scattering correction; EMSC, extended multiplicative scattering

orrection.
3 API 2
6 Unk 5 Unk 4 API <1

lactose and MCC have a strong and overlapping absorption band
Fig. 1. X-loading plots of three PCs after multiple-step pretreatments.
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ig. 2. Comparison of the third X-loading plot (red) from the PCA model with the
st derivative spectra of (a) the API and (b) MCC and lactose. (For interpretation of
he references to color in this figure legend, the reader is referred to the web version
f this article.)
ence was obtained by identifying the relationship between PCA
cores and HPLC CU results. Thirty tablets (10 from each feasibility
atch) were randomly selected and analyzed by HPLC. Content uni-
ormity results from these reference tablets were plotted against
he third set of scores (corresponding to PC03) of the same tablets.

Fig. 3. Correlation between the third PCA scores of the refe
armaceutics 380 (2009) 49–54

The PC03 scores displayed a good correlation with the CU results,
which confirms the relationship between the third PC and API con-
tent (Fig. 3). Scores of PC01 and PC02, however, did not correlate
with the CU results.

Based on the above discussion, a PCA model was “built” by using
the spectra of all 180 tablets. Performance of the model is schemat-
ically presented in Fig. 4. The third set of scores of all 180 tablets is
plotted according to their sub-batch numbers, with the red trian-
gles indicating the locations of the 30 reference samples. Scores of
the reference samples are also plotted using a pseudo-sub-batch
number 16. A content uniformity range can then be defined by
using the scores range of the reference samples. For example, a
score range of −0.002 to +0.002 corresponds to 90–110% of the API.
Without further calculation, it can be seen that all tablets from
sub-batches 2 and 5 had concentration values within 90–110%,
which is in agreement with the API content measured by HPLC
for the selected samples from sub-batches 2 (96.8–104.1%) and 5
(99.4–102.7%). For other sub-batches, the concentration values lay
outside the range for some of the tablets. It should be pointed out
that the concentration range could be increased by testing more
tablets that have extreme PCA scores using the reference method.

The above-discussed evidences demonstrate that the PCA model
is specific in separating variations related to API concentration from
other variances. Robustness of the model is hinted by the third X-
loading plots from the principal component analyses, which were
very consistent (Fig. 5). This also indicates that the PCA model may
be suitable for content uniformity prediction of unknown tablets.

3.2. CU of development batches by the PCA model

In early stage formulation development, it is desirable to obtain
analytical data quickly so that the effectiveness of formulation or
processing modifications can be evaluated rapidly. To predict the
CU of tablets from the development batches, the 180 spectra data
set was used as a calibration set. Also, 120 tablets (60 from each
development batch) were randomly selected (Table 1), scanned and
the spectra pretreated as specified in Section 2.2. In the next step,

the data set was combined with the calibration set to form a col-
lection of 300 spectra as the prediction set. PCA was performed
for the prediction set, which produced PCA scores and loadings
corresponding to five PCs (Table 2). During manufacturing of the
development batches, processing conditions were varied and two

rence samples and HPLC content uniformity results.
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To answer this question, a PLS model was developed using sam-
ples from the feasibility batches (details about the model are not
discussed here). The model failed to give good predictions for sam-
ples from the development batches. One interesting observation
ig. 4. The third PCA scores plotted against sub-batch numbers for samples from
nterpretation of the references to color in this figure legend, the reader is referred

ifferent grades of lactose were used. These variations caused the
CA to pick up two additional PCs. Based on comparison of the X-

oading plots, the fifth PC (PC05) was identified as describing API
oncentration variations in the whole data set. To confirm this rela-
ionship further, the third set of scores from the calibration set was
lotted against the fifth set of scores from the prediction set (Fig. 6).
good correlation between them confirmed the identity of PC05.

t is particularly interesting that the PCA model worked for both
evelopment batches even though they were prepared using two
ifferent grades of lactose.

The reason for performing PCA on the prediction set rather than
he unknown samples directly is to take advantage of the available
eference values and for easier identification of the correct PCs as
emonstrated in Fig. 6. It may be difficult to identify the correct PC

or CU calculation for an unknown sample set. In addition, the cali-
ration set should span a wide range of API concentrations whereas
he later development batches are expected to have less variation.

The predicted results for the development batches were plot-
ed using Fig. 4 as a template and presented in Fig. 7 (sub-batch

umbers 10–15). Again, without further calculations, it can be seen
hat the composition of all tablets from the development batches
re within the 90–110% range. It is also evident that the develop-
ent batch 1 has better content uniformity compared with batch

ig. 5. The third X-loading plots from three separate principal component analyses
ith 60, 120, and 180 tablets.
hree feasibility batches (red triangles showing scores of reference samples). (For
web version of this article.)

2 (sub-batches 10–12 and 13–15 in Fig. 7, respectively), indicat-
ing that anhydrous lactose is a better premixing excipient in terms
of content uniformity. In an attempt to verify the PCA results, 20
tablets (10 from each development batch) were analyzed using
the reference method. Batch 1 (anhydrous lactose) had CU values
of 97.2–100.1% (mean = 98.8; RSD = 1.0) compared with a range of
91.2–98.5% (mean = 95.8; RSD = 2.1) for batch 2. These results were
consistent with the PCA predictions.

3.3. Principal component analysis versus partial least squares
regression

It has been demonstrated that a PCA model can be used for CU
analysis of low dose tablets. However, what are the advantages of
using a PCA model instead of a partial least squares (PLS) model?
was that PC01 and PC02 of the model described hardness variation

Fig. 6. Correlation between the third and fifth sets of PCA scores from the calibration
and prediction set.
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ig. 7. PCA prediction of content uniformity for tablets from the development batch
s referred to the web version of this article.)

nd other excipient-related variances (e.g. lactose anhydrous ver-
us monohydrate) rather than API concentration in the tablets. In
arly formulation development, the physical changes are not well
ontrolled, which hinders the development of robust PLS models.
n the other hand, the PCA model separates chemical changes from

he physical ones and therefore it is more robust. Detailed discus-
ions with regard to physical property changes and PLS regression
odeling for low dose tablets are beyond the scope of this article

nd will be given in a separate publication.

. Conclusions

This article demonstrates that a simple PCA algorithm can be
sed for content uniformity determination of solid formulations.
he model appears particularly advantageous for analysis of low
ose tablets during early stage formulation development. A PCA
odel can be generated by selecting a set of spectra that con-

ain the suitable types (e.g. variances related to tablet hardness
nd API concentration) and amounts (e.g. a suitable API concen-
ration range) of variances. The quantitative prediction by a PCA

odel is based on correct identification of the X-loadings and the
stablishment of a PCA scores versus API concentration relation-
hip. Limited reference testing is needed to define the quantitative
elationship and a concentration range. A PCA model may be less
ccurate compared with a PLS model but it appears to be more
obust. Because NIR is a fast and non-destructive method, a large
umber of samples can be analyzed in a timely and cost-effective
anner, which should result in better characterization of formula-

ion development batches.
cknowledgements
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